What Is a PLL?

Design Your Own Graphic Equalizer

Understanding Noise In Circuits



PLEASE follow the directions. I am not responsible if you screw this up and Baal or some other demon sucks you into the pits of Hell

You First need to build the circuit below and connect it to Line-in of Sound Card:

Like this

Then use this software to see the wave forms



Your Ad Here


Making Your Own Battery Backup




This is a 9V power supply which will work even on power failure. It uses a rechargeable battery and regulators. A transformer with 15-0-15 AC volts output is required. In the first regulator U1 the output is lifted up by 1.4V and in the second regulator U2 by a resistor divider. In the second regulator the voltage across resistor R3 is 5V, so the current is 5V / 1K = 5mA this adds to the quiescent current of 5mA from the regulators ground terminal and flows into the resistors R1 and R2 in parallel which form 404 ohms, 10mA thru 404 ohms is 4V. So the output will be 5 + 4 = 9V. Note that the charge and discharge paths of the battery are separated with diodes.

Building A Phase Lock Loop




This is a PLL or phase lock loop, it mainly consists of a VCO and phase comparators.
This is a component in FM demodulation and modulation.
It is used in a closed loop control to maintain a stable frequency.
The Circuit above is good for learning the full use of a small Dual Trace Scope.
The Circuit has both Analog and Digital areas and is a part of communication.

Build A Battery Level Indicator




This circuit uses a LM339 pdf, a quad comparator. LM339 pdf can work on single or dual supplies, it has a open collector output that can drive 15mA, low power consumption.

When you measure the open circuit voltage of a battery with a high impedance DMM (10M), the value may be a bit misleading. Apply a dummy load to bleed the battery a bit so that proper readings can be taken on Load. The load below is a 100 ohms wire-wound fusible ceramic resistor which will heat a bit when you test 12V batteries.

Voltage Level Indicator




This discrete circuit is derived from a Siemens Application Note 1974. This circuit uses common components of today. The circuit is here as it is of high educational value. I have not tested it. You can 'simulate and test' or 'wire it up and try' and let me know how it worked. The Circuit is also a simple analog to digital converter. You can use optos in place of LEDs.

T1 and T2 make a differential amplifier. T3, T4 and T5 driving the LEDs are comparators. Now to learn more on how they work you have to study circuits at 4QD-TEC and search Educypedia for more. Some pspice ideas here and at 101Science.com.

When input voltage is increased T1 is turned on which leads to more base current for T3 which Lights LED1. When input voltage is less T2 turns on as it gets a better base current from P3 which turns on LED2 via T4. When both LEDs are off T5 gets biased as no drop across R5 which lights the LED3 thru T5 hopefully.

What you need to know is a small current Ib thru the base-emitter path in the direction of the emitter arrow will lead to a large Current Ic thru the emitter-collector path in direction of arrow. Ic = B * Ib where B - beta is the DC current gain, it could be 100-400 see Towers International Transistor Selector see chipdir.

Beta is different in each transistor you buy and varies with the test conditions and even with temperature and age. The LED1 and LED2 will indicate above or below Limits set by P2 and P1. The Limit Threshold itself is set at P3 i think. LED3 will light when Hi LED and Lo LED both are off.

The applications of this circuit are FM tuning indicator, Stereo Balance Indicator (Wire T2 like T1 then we get two channel inputs) and battery level indicator.
Listed on BlogShares Web Blog Pinging Service